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Abstract

A number of complex physical problems can be approached through N-body simulation, from fluid flow at high

Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation

is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work intro-

duces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We dem-

onstrate that the number of particle–cluster interactions and the order at which they are performed are directly affected

by partition geometry. Weighted k-means partitions minimize the sum of clusters� second moments and create well-

localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-

order approximations and fewer cells.

We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes

and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a

parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay

and Krasny [Journal of Computational Physics 172 (2) (2001) 879–907]. The method is applied to vortex simulations of

a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors

maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel

efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an

irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new

vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the

domain than a global oct-tree.
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1. Introduction

A number of complex physical problems can be approached through N-body simulation. High-Reynolds

number flows computed with vortex methods [2] are one example. Other important applications range from

gravitational astrophysics and cosmology [3] to smoothed particle hydrodynamics, molecular dynamics,

non-Newtonian flows [4], and electrodynamics [5].

In all these applications, a dense system of pairwise particle interactions leads to a computational cost of

O(N2), which is prohibitive for large N. Fast summation algorithms that reduce this cost to O(N log N) or
O(N) are necessary to achieve high resolution and realistic scale. Typically, these methods must contend

with irregular particle distributions of non-uniform density; in dynamic N-body problems, the algorithms

also face a particle distribution that evolves in time. Large, realistic physical problems require efficient

implementation of these algorithms on massively parallel distributed memory computer architectures.

The present work employs hierarchical methods for fast summation. Hierarchical methods construct

approximations for the influence of a cluster of particles and, where possible, use these approximations

to replace pairwise particle interactions with a smaller number of particle–cell or cell–cell interactions.

Based on the latter, these methods may be classified into treecodes (particle–cell interactions) [6,7] and fast
multipole methods (cell–cell interactions) [8]. The focus here is on treecodes; a more comprehensive back-

ground on hierarchical methods is provided in Section 2.2.

The ‘‘quality’’ of spatial partitioning is central to the performance of a hierarchical method. The spatial

partition determines cell moments and cell proximities (including neighbor relationships), and thus controls

the number and order of particle–cell interactions necessary to achieve a given level of accuracy. For an

efficient parallel implementation, one also must devise a spatial partition that is compatible with distribut-

ing hierarchical interactions over many processors.

In this paper, we introduce new algorithms, based on k-means clustering, for partitioning parallel hier-
archical N-body interactions. The advantages of cluster partitions stem from their geometric properties.

K-means partitions optimize cluster moments and other quantities that control the error bounds of a tree-

code, and thus reduce the computational cost of N-body approximations. The clustering procedure is inher-

ently adaptive – an important feature for non-uniform distributions of particle positions and weights – and

itself may be parallelized efficiently. All these features are preserved as the number of processors is scaled.

Alternative algorithms for spatial partitioning of parallel treecodes – namely orthogonal recursive bisection

(ORB) [9,3] or the hashed-oct-tree (HOT) algorithm [10] – do not yield similar geometric properties.

We demonstrate the parallel performance of clustering by constructing a parallel treecode for vortex par-
ticle simulations, based on the serial variable-order treecode developed by Lindsay and Krasny [1]. For sim-

plicity, we do not focus on distributed data and the communications algorithms required to fetch non-local

cell data efficiently. On a modern computer, locations, weights, and cell moments for up to 107 particles will

fit on one processor�s memory, so this problem becomes less important. We also note that the spherical do-

main geometries favored by clustering minimize surface area to volume ratios often associated with com-

munications overhead, and thus may be advantageous to any distributed data implementations we develop

in future work.

We also present new heuristics for dynamically load balancing cluster partitions. These techniques in-
clude dynamic scaling of cluster metrics and adaptive redistribution of cluster centroids. Load balance is

always an issue in N-body problems with non-uniform particle distributions, but a unique impediment
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to load balance in the present context is the continual introduction of new vortex elements. As detailed in

Section 4, new element introduction is crucial to vortex simulation of turbulent flow: resolving the stretch-

ing of vortical structures and the resulting breakdown of the flow into small scales requires a continual

remeshing of vortex filaments. We demonstrate the performance of load-balanced clustering on three-

dimensional vortex simulations of a transverse jet [11,12].
2. Background

We begin by reviewing the fundamentals of vortex particle methods for fluid dynamics, illustrating how

the formulation gives rise to a classical N-body problem. We then discuss hierarchical solvers that have

been developed for efficient solution of such N-body problems in serial code.
2.1. Vortex methods and N-body problems

Vortex methods are a computational approach to systems governed by the Navier–Stokes or Euler equa-

tions, employing a particle discretization of the vorticity field and transporting vorticity along particle tra-

jectories [2,13–16]. Originally conceived of for high Reynolds number flows [17] and for flows dominated by

vortex dynamics [18], these methods have received significant attention over the past 30 years, maturing

into tools for direct simulation, supported by several convergence results and a rigorous error analysis

[19–21,2]. New particle methods for solving the diffusion equation, coupled with viscous splitting, have ex-
tended the applicability of vortex methods to flows of finite Reynolds number [22–25], enabling direct sim-

ulation of the Navier–Stokes equations, including boundary layer phenomena. We also mention a range of

techniques for dealing with complex boundaries [26], as well as extensions to stratified flows [27], aero-

acoustics [28], and reacting flows [29].

In all these contexts, vortex methods are attractive for their ability to simulate convection without

numerical diffusion [17,2]. Also, inherent in the grid-free nature of the method is a dynamic clustering of

computational points only where they are needed, i.e., over the small support of the vorticity field. The es-

sence of these methods is the discretization of the vorticity field onto Lagrangian computational elements,
or particles. In three dimensions, these particles have vector-valued weights ai(t) ” (x dV)i(t) and trajecto-

ries vi(t).
xðx; tÞ �
XN
i

aiðtÞfd x� vi tð Þð Þ: ð1Þ
The vorticity associated with each element is desingularized with a radially symmetric core function fd(r) of

radius d, where fdðrÞ � d�3f jrj
d

� �
. The function fmust be smooth and rapidly decreasing, satisfying the same

moment properties as the Dirac measure up to order m > 1 [2].

The following background focuses on inviscid flows, for it is the convective step in vortex methods that

embodies the computational challenges addressed in this paper. Equations of motion for inviscid, incom-

pressible flow may be written in vorticity transport form, where x = $ · u:
Dx

Dt
¼ x � ru; ð2Þ

r � u ¼ 0: ð3Þ

In this Lagrangian description, the right-hand side of (2) accounts for stretching and tilting of the vorticity
as it is convected by the flow.



496 Y.M. Marzouk, A.F. Ghoniem / Journal of Computational Physics 207 (2005) 493–528
Using the Helmholtz decomposition of the velocity field, we write
u ¼ ux þ up; ð4Þ

where ux is the curl of a vector potential (ux = $ · w) and up is the velocity of a potential flow (up = $/).
Given a distribution of vorticity x, the vortical velocity ux may be recovered from the Biot–Savart law
uxðxÞ ¼ � 1

4p

Z
D

x� x0ð Þ � x x0ð Þ
x� x0j j3

dx0 ¼ K � x: ð5Þ
Here, K denotes the matrix-valued Biot–Savart kernel.

The above equations are closed by choosing a divergence-free potential velocity field to satisfy a pre-

scribed normal velocity n Æ u on the boundary of the given domain D:
r2/ ¼ 0;

n � r/ ¼ n � u� n � ux on oD:
ð6Þ
Together, Eqs. (2)–(6) completely specify the motion of an incompressible, inviscid fluid [30].

Given a regularized particle discretization of the vorticity field as in (1), the Biot–Savart law (5) may be

rewritten as follows:
uxðxÞ ¼
XN
i

Kd x; við Þ � ai; ð7Þ
where the regularized kernel Kd results from convolution with the core function, Kd = K * fd.
Vortex methods solve the inviscid equations of motion via numerical integration for the particle trajec-

tories vi(t) and weights ai(t). Computing particle trajectories vi(t) requires evaluation of the velocity at each

particle at every timestep. In three-dimensional vortex methods, one must also evaluate velocity gradients in

order to compute the vortex stretching term, whether through a finite-difference operator along the local

vorticity vectors or through differentiation of the Biot–Savart kernel, thus incurring additional computa-

tional cost. As each vortex element induces a velocity on every other vortex element, this is an N-body prob-

lem; direct evaluation of (7) at every element yields a computational cost of O(N2). For large numbers of

particles, this clearly can be prohibitively expensive.
The O(N2) bottleneck is not unique to vortex methods; indeed, it is a feature inherent to N-body prob-

lems in a variety of contexts, whether the result of summation or quadrature (as in (7) or (5)) is a velocity, a

force, or a potential. Gravitational N-body simulations are an essential tool in astrophysics, where they are

used to study galaxy dynamics and cosmological structure formation [31,9]. Here, as in vortex methods,

large N is essential to resolve fine features and the necessary large scales [3]. N-body problems are also

encountered in smoothed particle hydrodynamics [32,33] and plasma physics. Coulomb potentials and

other, more complicated short-range potentials give rise to N-body problems in molecular dynamics

[34,35], with increasingly important biological applications [36,37]. Overcoming the O(N2) bottleneck is
thus essential to progress across a variety of scientific fronts.

2.2. Hierarchical methods

Hierarchical methods for N-body problems construct approximations for the influence of a cluster of

particles and, where possible, use these approximations to replace particle–particle interactions with a smal-

ler number of particle–cluster or cluster–cluster interactions. The construction of these approximations is

typically organized by a recursive tree structure. Treecodes, introduced for gravitational problems by Appel
[6] and Barnes–Hut [7], organize a group of N particles into a hierarchy of nested cells, e.g., an oct-tree in

three dimensions. At subsequent levels of the tree, each ‘‘parent’’ cell is divided into smaller ‘‘child’’ cells

representing finer spatial scales.
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Treecodes have found wide application in particle methods. The original Barnes–Hut (BH) algorithm

employs an oct-tree with a monopole moment calculated at each cell. Tree construction proceeds until leaf

nodes each contain only a single particle. The tree is traversed once for every particle using a divide-and-

conquer strategy of particle–cell interactions; if the monopole approximation at a given cell cannot provide

the force on the target particle to a sufficient level of accuracy, the contribution of the cell is replaced by the
contribution of its child cells. The total computational cost scales as O(N log N). Variations on this tree-

code algorithm have been numerous; broadly speaking, these differ in terms of physics – i.e., the kernel

describing the influence of each particle [10,35,36,5] – and in the type and order of series approximation

used to describe the influence of a cluster [38,39,1]. Other improvements encompass adaptive features of

the tree construction [40] and more sophisticated error estimates [31,41].

Fast multipole methods (FMM), introduced by Greengard and Rokhlin [8,42], employ additional analyt-

ical machinery to translate the centers of multipole expansions and to convert far-field multipole expansions

into local expansions, reducing the total operation count to O(N). Like many BH-type codes, these codes also
use higher-order approximations, typically a multipole expansion involving spherical harmonics in three

dimensions [43,44], although additional schemes and different bases have been proposed [39,36,45,46].

2.2.1. Lindsay–Krasny treecode

Lindsay and Krasny have introduced a BH-type treecode with many adaptive features well-suited to vor-

tex particle methods [1]. This serial code provides a convenient platform on which to develop and test the

clustering and load-balancing algorithms described in this paper, so we will review its essential features. The

Lindsay–Krasny (LK) code organizes particles in an oct-tree. Adaptive features of the tree include non-uni-
form rectangular cells that shrink to fit their contents at every level of the tree and a leaf size parameter N0

below which a cell is not divided. The velocity induced by each particle is given by the Rosenhead–Moore

kernel, a regularized form of the Biot–Savart kernel; in vortex methods, this regularization is also known as

the low-order algebraic smoothing [47].
Kd x; x0ð Þ ¼ � 1

4p
x� x0

ð x� x0j j2 þ d2Þ3=2
: ð8Þ
Because this kernel is not harmonic, it cannot be expanded in a classical multipole series; instead the tree-

code employs a Taylor expansion in Cartesian coordinates to approximate the influence of each cell at a

target point x:
uðxÞ �
XNc

i¼1

Xkkk<p

k

1

k!
Dk

yKd x; ycð Þ yi � ycð Þk � ai ð9Þ

�
Xkkk<p

k

ak x; ycð Þ �mkðcÞ; ð10Þ
where yc is the coordinate of the cell centroid, Nc is the number of particles in the cell, yi are their coordi-

nates, k = (k1, k2, k3) is an integer multi-index with all ki P 0,
akðx; ycÞ ¼
1

k!
Dk

yKdðx; ycÞ ð11Þ
is the kth Taylor coefficient of the Rosenhead–Moore kernel at y = yc and
mkðcÞ ¼
XNc

i¼1

ðyi � ycÞ
k
ai ð12Þ
is the kth moment of cell c about its center. Taylor expansions are computed to arbitrary order p up to a

user-specified maximum order of approximation pmax; a typical choice is pmax = 8. A recurrence relation

allows the Taylor coefficients ak to be computed cheaply (each successive coefficient in O(1) operations)
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for each particle–cluster interaction. Cell moments, on the other hand, are computed as needed for each cell

then stored for use in subsequent interactions. Unlike other vortex particle treecodes, the LK treecode

incorporates the regularization of the kernel directly into the expansion [48,49].

The velocity at each target particle is evaluated using a ‘‘divide-and-conquer’’ strategy governed by a

user-specified accuracy parameter � and an error estimate derived from the approximation error for the vec-
tor potential:
2 In

targets

memb
� P
MpðcÞ
4pRpþ1

; ð13Þ
where
MpðcÞ ¼
XNc

i

jyi � ycj
pjaij ð14Þ
is the pth absolute moment of cell c and R = (jx � ycj2 + d2)1/2 is the regularized distance between the target

particle and the cell center. Velocity evaluation for each target particle begins at the root cell and proceeds

recursively. For each cell c encountered, the code computes the minimum order of approximation p that sat-

isfies inequality (13). If this p < pmax, the particle–cell interaction is evaluated for the cell c; otherwise the
velocity evaluation descends the hierarchy and sums the velocities induced by the children of cell c. This pro-

cedure is modified by a run-time choice between Taylor expansion and direct evaluation at each cell, which

may become active at lower levels of the hierarchy; if the estimated time for direct summation is smaller than

the estimated time for Taylor expansion, the former method is used to compute the influence of the cell.

Some of our ongoing work [50] develops recurrence relations for other regularizations of the Biot–Savart

kernel, including the higher-order algebraic smoothing proposed in [47].
3. Computational approach

Efficient parallelization of an algorithm depends on avoiding the duplication of work among processors,

ensuring equal workload at each processor, and minimizing additional costs, such as the time for inter-pro-

cessor communication and domain decomposition. In the case of treecodes for particle methods, a good

spatial decomposition is essential to all of the goals just mentioned.

3.1. Partition geometry in parallel N-body problems

We begin by considering why partition geometry is important to hierarchical N-body solvers – that is, the

mechanisms by which partition geometry affects computational cost. We likewise seek to describe, qualita-

tively, what constitutes a ‘‘good’’ partition. In later sections, we will discuss the algorithms used to compute

our domain decomposition (Section 3.2) as well as the quantitative features of good spatial partitions (Sec-

tion 3.3).

In the following discussion, we make a distinction between ‘‘source’’ particles and ‘‘target’’ particles. Tar-

gets are the points at which the velocity or force is computed; sources are the particles, or quadrature points,
inducing the velocity or force. In most situations – e.g., a vortex element code or a gravitationalN-body sim-

ulation – the source sets and target sets are exactly the same, and each particle simply takes turns in either role.

For simplicity, in the following discussion we let the set of source particles be identical to the set of target

particles.2
a vortex filament code, the two sets may differ slightly depending on the quadrature rule used along the filament coordinate; the

(filament nodes) may be staggered with respect to the sources (element centers). In this case, however, the displacement between

ers of the source and target sets is less than half a core size and relatively negligible in discussing cluster geometry.
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A given domain decomposition method admits many schemes for parallelizing the treecode calculations.

Consider first the possibility of using a global tree. This process may be driven by ‘‘parallelizing over tar-

gets.’’ By this we mean that the domain decomposition scheme yields a certain partition of particles and

that each processor is responsible for computing the influence of the entire domain on the particles assigned

to it by the partition. A global tree is thus constructed on each processor, but only in structure: Cells sub-
dividing the root cell are included only if they will be requested during tree traversal for velocity evaluation.

Because velocity is evaluated only for the assigned particles, the resulting set of tree cells with filled-in mo-

ments (to varying order) is in fact the locally essential tree [9,51]. Each locally essential tree is a global tree,

describing the influence of the entire domain on the assigned target particles.

The topology of the locally essential tree and the methods by which it is constructed depend strongly on

the domain decomposition scheme and on the overall parallel implementation. Section 3.5 discusses these

parallel implementation issues in detail.

Regardless of the global tree�s topology, the fundamental issues of geometry in domain decomposition
are the same. Contrast cases of good and bad partition over targets, illustrated in Fig. 1 for three proces-

sors. In the worst case, case (a), the partitions are interleaved; that is, the convex hull of particles assigned

to one processor overlaps with the hull of points on another processor. Even if this is not the case – con-

sider, for instance, long and narrow non-overlapping domains as in Fig. 1(b) – the locally essential trees on

different processors can still overlap strongly. This means that computations evaluating the influence of

cells deeper in the hierarchy and at higher order are duplicated across processor domains, and parallel effi-

ciency will be poor. To minimize the overlap of locally essential trees, one should seek better-separated do-

mains with minimal surface area to volume ratios, thus favoring more spherical, non-overlapping partitions
as in Fig. 1(c). Note that in this discussion, the concept of ‘‘overlap’’ characterizes not the spatial extent of

trees but the duplication of locally essential cells at each level of the tree hierarchy.

An alternative approach to parallelization avoids constructing a global tree (i.e., a locally essential tree),

and instead can be viewed as ‘‘parallelizing over sources.’’ Here, the domain decomposition scheme is ap-

plied to the particles and a local, possibly adaptive, oct-tree is constructed in each processor�s domain, as

shown schematically in Fig. 2. The target particles are left unorganized, and each processor computes the

influence of its source tree on the entire set of target particles. Global reduction operations then sum the

contribution of each processor to the velocity at every target.
With this approach, the geometric considerations governing good domain decomposition are analo-

gous to those described before. Cases of good and bad source partition are shown schematically in

Fig. 2 for three processors. Again, the worst case partition is one in which source points belonging to

the three processors are interleaved. Though these sets of points are interleaved in space, they belong

to distinct local trees, and thus their influence must be approximated with up to three times as many par-

ticle–cluster interactions as necessary (k times in the case of k interleaved partitions). But the situation

persists even in the case of non-overlapping partitions. Consider the partition shown in Fig. 2(b). The

source domains are long and narrow, and they constrain the shape of each local oct-tree accordingly.
One can enumerate Nk pairs of source domains interacting with target particles; few of these pairs specify

targets that are well-separated from sources. The closer a target particle lies to a source domain, the more

expensive the interaction; evaluation of the velocity induced on the target will descend to cells deeper in

the local source hierarchy and/or employ higher-order expansions. The relative lack of well-separated do-

main-target pairs is equivalent to noting that the surface-area to volume ratio of each source domain is

large, compared to the partition in Fig. 2(c). Here, the domains are more compact, and the domain

boundaries are more nearly spherical. As a result, velocities at the targets may be computed with fewer

particle–cluster interactions.
The qualitative discussion above emphasizes the critical role of partition geometry in N-body problems,

whether the partition is used to separate target particles or to fix the root cells of local source trees. For

identical sets of particle distributions and weights, the partition geometry directly determines the number



targets in domain # 1

targets in domain # 2

targets in domain # 3

targets in domain # 1

targets in domain # 2

targets in domain # 3

targets in domain # 1

targets in domain # 2

targets in domain # 3

(a) Interleaved.

(b) Non-interleaved.

(c) Well-localized.

Fig. 1. The geometry of partitions over target particles, illustrated with three processors. Solid lines outline the locally essential tree for

domain #2.
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and order of particle–cluster interactions necessary to evaluate the velocity at each particle, summed over

all domains.

3.2. K-means clustering

We propose a new approach for parallel domain decomposition of vortex particles, based on k-means

clustering of the particle coordinates. Clustering procedures are essential tools for multivariate statistical

analysis, data mining, and unsupervised machine learning [52,53]; k-means clustering [54] is a classical algo-

rithm in these contexts. In the new context of domain decomposition, however, we develop a variant of the

k-means algorithm yielding a partition with many desirable properties.



sources in domain # 1

sources in domain # 2

sources in domain # 3

(a) Interleaved.

targets (in domain # 1)
targets (in domain # 3)

(b) Non-interleaved.

targets (in domain # 1)
targets (in domain # 3)

(c) Well-localized.

Fig. 2. The geometry of partitions over source particles, illustrated with three processors. Dashed lines represent the local source tree

for domain #2. Note that the quad-tree in (b) employs an adaptive bisection to control the aspect ratio of its cells, but still

demonstrates the larger number of particle–cluster interactions that accompany poor domain geometry.
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K-means takes a set of N observations {xi} in d-dimensional space as input and partitions the set into k

clusters with centroids {y1, . . .,yk}, where k is prescribed. The partition is chosen to minimize the cost
function
J ¼
XN
i¼1

min
k0

jxi � yk0 j
2wi

� �
¼
Xk
j¼1

XNj

i

jxi � yjj
2wi; ð15Þ
where wi is a scalar weight associated with each observation. In other words, each observation is assigned to

the nearest centroid, and the centroid positions are chosen to minimize the weighted within-cluster sum of

squared Euclidean distances. In our implementation, for reasons that will be made clear below, we weigh

each particle�s contribution by its vorticity magnitude; in other words, we set wi = jaij. K-means results in a

flat or non-hierarchical clustering, in contrast to other clustering algorithms that construct hierarchical par-

titions, either from the bottom up (agglomerative) or the top down (divisive) [53].
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The k-means algorithm can be viewed as an iterative optimization procedure for the cost function de-

fined in (15), beginning with a choice of centroids {yi = 1, . . .,k} and iteratively updating them to reduce J.

K-means will find a local minimum of J, and thus the solution may depend on the initial choice of centroids;

the problem of finding a global minimum is in fact NP-complete. We implement a ‘‘batch’’ version of the k-

means algorithm, in which each particle is assigned to its closest centroid before the centroids are updated,
at each iteration. This is in contrast to the ‘‘online’’ approach, in which the centroid locations are updated

as each particle is individually classified [55]. In either case, the resulting classification boundaries are the

Voronoi tesselation of the cluster centroids, and thus they bound convex subsets of Rd .

An outline of the algorithm, using vorticity magnitudes jaij as particle weights, is as follows:

Algorithm. K-means clustering

initialize N, k, y1, . . ., yk
do l = 1 to lmax

assign each particle xi to cluster k�i ¼ argmin
k0

ðjxi � yk0 j
2Þ

put each yk0 ¼
PNk0

i
jai jxiPNk0

i
jaij

, where Nk 0 is the number of particles assigned to cluster k 0

recompute J(l)

until J(l� 1) � J(l) small
return centroids y1, . . ., yk and memberships fk�i gi¼1;...;N

The computational complexity of this algorithm is O(Nk dT), where T is the number of iterations
and d is the dimension of the space containing the observations, i.e., xi 2 Rd . It is straightforward

to implement k-means clustering in parallel, however, and we do so using the parallel implementation

proposed by Dhillon and Modha [56]. Since we typically seek a number of clusters k equal to the num-

ber of processors, an ideal parallelization reduces the computational complexity to O(N dT). This scal-

ing is what we find in practice, as will be shown in Section 4. Recent work has demonstrated new

algorithms for fundamentally accelerating k-means clustering, using kd-trees to reduce the number of

nearest-neighbor queries [57]. We do not pursue these approaches here, but note that they may become

useful in ensuring that the time for parallel domain decomposition (O(N) with parallel k-means) re-
mains a small fraction of the time required for velocity evaluation (O(N/k log N) in the ideal case)

for very large k.

It is worthwhile to note that the partition of vortex elements resulting from the clustering procedure may

bear no relation to the data structure elsewhere used to represent the vortex particles in memory. This is

particularly relevant to vortex filament methods, in which an ordering, or connectivity, between neighbor-

ing elements must be preserved. In this case, it may be necessary to maintain separate data structures or

attribute lists, one appropriately representing filament connectivity, and another encoding the flat k-means

partition, which considers the vortex elements as a set of completely independent particles.
3.3. Towards optimal geometry of clusters

We use k-means clustering to construct a partition of the source particles, ‘‘parallelizing over sources’’ as

described in Section 3.1. A local adaptive oct-tree is then constructed from each processor�s assigned par-

ticles and the velocities induced by each processor�s source tree are summed at each target. The root cell of

each source tree is thus a k-means cluster, as illustrated in Fig. 3. Because these clusters minimize the cost

function J in (15), their boundaries define tightly localized, convex sets. Based on the preceding discussion,
this partition geometry should favor smaller numbers and lower orders of particle–cluster interactions, for

greater parallel efficiency.



Fig. 3. Schematic of k-means partition with a local source tree. Solid lines are k-means cluster boundaries, defining the Voronoi

tesselation of the cluster centroids (solid circles). Dashed lines represent the local (quad-)tree for a single domain.
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Considerations of optimal source geometry can be made yet more precise, however. The numerator in

the error criterion of the LK treecode, (13), is the pth absolute moment of cell c,Mp(c). Note the correspon-

dence between this sum and the cost function in (15). Our vorticity-weighted k-means algorithm finds a par-

tition yielding a local minimum of
PK

k M2ðc0;kÞ where c0,k are the resulting K root cells. While this flat

partition cannot minimize individual absolute moments M2(c0,k), it will tend to make each one small. Fur-

thermore, while the minimization of
P

Mp strictly occurs for p = 2,
P

Mp will generally remain small for
other values of p, with possible exception of pathological cases.

Error estimates containing absolute moments of the formMp(c) are not limited to the LK treecode. In fact,

they are a general feature of multipole expansions [31,10]. For multipole expansions of the singular Biot–

Savart kernel employing spherical harmonics, Winckelmans et al. [48,10] report the following error bound:
epðxÞ 6
1

ðd � bÞ2
p þ 2ð ÞBpþ1

dpþ1
� p þ 1ð ÞBpþ2

dpþ2

� �
; ð16Þ
where ep(x) is the L2 error on ux at the evaluation point x, d = jx � ycj, b is the radius of the smallest sphere

centered at xc and containing all the particles in the cell, and
BpðcÞ ¼
Z
c

x0 � yck kp a0k kdx � MpðcÞ: ð17Þ
In this case, the error depends not only on the cell moment but on the effective cell radius b, another quan-
tity that will generally be small in a k-means partition.

In all these cases, error bounds or error criteria directly control the computational cost of the treecode by

affecting the order of expansion (in a variable-order code) and the choice of cells used to sum the velocity at

each target.When the inequalities in (13) and (16) cannot bemet, evaluation of the velocity on a target particle

must be performed at higher order or descend to the children of the cell; in the latter case, a single particle–

cluster interaction may be replaced with up to eight interactions. (In the limit, tree descent typically devolves

into direct summation; criterion for this depend on the structure of the particular treecode.) Reducing the cell

moment M(c) and cell radius b allows an error criterion to be met for smaller cell-to-target distances R or d,
avoiding the need to increase the order of expansion p or descend further into the hierarchy.

In the present implementation, k-means clustering determines the configuration of each root cell. The

geometries of child cells in the local hierarchy are strongly influenced by the root, however. In other words,
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it is reasonable to expect a good root cell geometry to maintain small cell moments and radii several levels

into the hierarchy. We explore the impact of the depth of local trees on performance in Section 4.

For clarity, we have thus far focused our analysis on computational time, not on the communication

time associated with retrieving non-local cell or particle data. In fact, our current implementation keeps

copies of all the particle positions and weights on each processor; on a modern computer, this allows
for problem sizes of up to N = 107 and thus does not constrain the present vortex simulations. But we con-

centrate our discussion as stated above for more fundamental reasons. First, we view the relationship of

partition geometry to computational time as more fundamental, inherent to the accuracy and error bounds

of multipole expansions – e.g., the distance from a target to a cell center and the magnitude of the multipole

moments of the cell. Communication time is typically more implementation-dependent – it can depend on

the hardware interconnect or on latency-hiding features of the message passing architecture – and in

N-body problems is usually much smaller. Secondly, computational time and communication time are

not really separable issues. Minimizing the number and order of particle–cluster interactions has the simul-
taneous benefit of minimizing time spent on interprocessor communication, sending and receiving the cell

or particle data. Also, k-means clustering yields nearly spherical domains, which in turn minimize the sur-

face area to volume ratios often associated with communication overhead.

As described in Section 2.2, the serial LK treecode uses a user-specified accuracy parameter � to control

the velocity error at each target point, induced by all the sources. In order to maintain the same global error

specification in the present implementation, the global accuracy parameter � must be distributed to each

processor�s local tree. We take the following approach, patterned after the fractional distribution of � from
parent cells to child cells inside the LK oct-tree [1]:
3 Th

numbe

disrup

consid

replac

consis
�ðcÞ ¼ M0ðcÞ
M0

�; ð18Þ
where M0(c) is the 0th absolute moment of cluster c and �(c) is the accuracy parameter assigned to the oct-

tree in cluster c. In other words, the global accuracy parameter is distributed to each k-means cluster c in
proportion to its total vorticity magnitude.

A few other approaches to domain decomposition of treecodes will be reviewed in Section 3.5.

3.4. Dynamic load balancing

While k-means partition yields domain geometries that favor reduced computational cost, this partition

comes with no guarantee of load balance. Load balance is a difficult issue in N-body problems. Irregular

particle distributions, often with a wide range of particle densities, are typical and thus equipartition (ensur-
ing the same number of particles in each domain) does not ensure load balance. Contrast, for instance, the

cost of computing the velocity at a target that is well-separated from other particles to the cost of comput-

ing the velocity at a target in a densely populated region; clearly, more particle–cluster interactions must be

used to compute the latter [10]. Indeed, it is difficult to define or estimate a spatial distribution of ‘‘per-par-

ticle-cost’’ a priori, as this quantity depends both on the particle distribution and on how the distribution is

partitioned.3
e concept of ‘‘per-particle-cost’’ is perhaps most meaningful when considering each particle�s role as a target, for then the time or

r of interactions required for velocity evaluation at each particle is directly measurable, though even this measurement may be

ted by one-time costs like the fill-in of multipole moments or the retrieval of faraway data to build locally essential trees. When

ering partition over sources, the ‘‘per-particle-cost’’ becomes somewhat more ill-defined as the influence of each particle is

ed by multipole expansions of source cells. Allowing variable orders of expansion could make this per-particle cost even less

tent.
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In dynamic N-body problems, particle locations and weights change in time, and thus it is advantageous

to repartition the domain and re-balance computational loads as the particle distribution evolves. Vortex

particle methods render the load balancing process more challenging because of local mesh refinement; at

each timestep, new particles are introduced throughout the domain in order to maintain resolution and core

overlap [14,13,58]. The spatial distribution of the newly inserted particles is itself highly irregular and dif-
ficult to predict.

To address these difficulties, we develop several heuristics for the dynamic load balancing of k-means

clusters. The first of these introduces scaling factors sk into the weighted k-means cost function along with

a rule to adapt their values in time:
Fig. 4.

centro
J ¼
XN
i¼1

min
k0

sk0 jxi � yk0 j
2jaij

� �
: ð19Þ
The factors sk scale the squared Euclidean distance between each cluster centroid and the surrounding
particles, and thus modify the assignment at each k-means iteration. Each particle is assigned to the cen-

troid from which its scaled distance is smallest. The space around each centroid is effectively ‘‘zoomed’’

in or out by the scaling factor. The resulting classification boundaries are no longer planes equidistant from

the nearest two centroids, as in a Voronoi tesselation; instead, they are curved shells shifted closer to the

centroid with larger sk. Fig. 4 illustrates the geometry of these scaled k-means clusters. Cluster boundaries

are now the multiplicatively weighted Voronoi tesselation of the centroids [59].

To dynamically load balance the cluster populations, we update the scaling factors sk at the start of each

timestep. In general, the adaptation rule for scaling factors should express dependence on the previous
timestep�s scalings snk as well as the times tnk spent evaluating the influence of each cluster�s particles on

the whole domain. Here, the superscript n denotes the preceding time layer and n + 1 is the current time.
snþ1
k ¼ f snk ; t

n
k ; k ¼ 1; . . . ;K

� �
: ð20Þ
In the present implementation, we choose a simple case of this adaptation rule, multiplicatively updating

each sk based on each cluster�s deviation from the mean source evaluation time �tn ¼
P

kt
n
k=k.
snþ1
k ¼ snk 1þ a tanh b

tnk ��tn

�tn

� �� �
: ð21Þ
1

2

3

1
1 + α l

l

α2 = s1/s2

Two-dimensional schematic of scaled k-means cluster boundaries, with three clusters. The numbered solid circles are cluster

ids. Clusters have scaling factors si; here, s1 > s2 = s3.
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In this sense, we are using the relative time required to evaluate the velocity due to all the sources in clus-

ters at the previous timestep as an estimate of the relative time required by a similarly composed cluster at a

nearby position in space. Cluster boundaries and centroids will change from timestep to timestep, as will the

actual memberships – due to movement of particles, evolution of particle weights, and new particle intro-

duction – but these changes should be incremental.
After each iteration, sk will increase for a ‘‘high-cost’’ cluster and vice-versa. Expensive clusters will thus

lose particles to their neighbors, while clusters with below-average tk will incrementally become more

attractive. The parameters a and b can be tuned; we find that a = 0.1 and b = 2 give good performance.

We also impose safety bounds to avoid unreasonable values of the scaling factors; after each application

of (21) we require that 0.25 < sk < 4.0.

A new k-means partition is computed at each timestep, immediately after updating the cluster scalings.

At the first timestep, all the sk are set to unity and initial guesses for the centroids yk are randomly chosen

from among the particle locations. At subsequent timesteps, converged centroid locations from the preced-
ing step are used as initial guesses for the current k-means partition. As a result, later applications of

k-means converge much more quickly than the first. In practice, three or four k-means iterations are suf-

ficient to achieve convergence for k-means processes that are initialized with the preceding step�s centroids.
A second heuristic for load balancing the k-means domain decomposition involves modifying the cen-

troid initializations themselves. As discussed in Section 3.2, the k-means algorithm yields only a local opti-

mum, and thus the final partition may be quite dependent on the initial yk. We take advantage of this

dependence by splitting the centroid of the highest-cost cluster at the end of each timestep. We select the

particles that were assigned to the cluster with maximum tnk and partition them with a local application
of k-means, putting k = 2. The two resulting converged centroid locations are used as initial guesses for

the full k-means iterations that partition the entire domain. Since the total number of centroids must remain

constant (and equal to K), the centroid of the lowest-cost cluster is removed from the initialization list.

Aided by these successive splittings, the centroid distribution will adapt itself to the particle distribution

over time.

A final heuristic enables the load balancing scheme to recover from situations in which the random initial

choice of centroids may be poor. If the load imbalance, defined as ðmaxktkÞ=�t, exceeds a chosen safety

threshold for two timesteps in a row, the centroids are ‘‘reseeded’’ – in other words, new centroid initial-
izations are randomly chosen from among the current particle locations and the scaling factors sk are all

set to unity. For most of the runs reported herein, we set the threshold imbalance to 1.5 and observe that

this level of imbalance is rarely encountered. (For more details, see Section 4.6 below.)
3.5. Other frameworks for treecode parallelization

The preceding sections introduced k-means clustering as a new tool for the partition of hierarchical

N-body methods. Other frameworks for parallelizing treecodes have been developed in the literature, how-
ever, and it is worthwhile to contrast their approaches to domain decomposition, load balancing, and inter-

processor communication with the present k-means-based implementation.
3.5.1. ORB

Beginning with a parallel BH-type code developed by Warren and Salmon for astrophysical N-body sim-

ulations [9], there have emerged a family of parallel treecodes employing ORB for domain decomposition

[3,51,60]. ORB recursively partitions the computational domain into rectangular cells. At each level of the

hierarchy, the domain is bisected along its longest coordinate dimension. The result of this partition is a
binary tree with each leaf node corresponding to the domain of a single processor; for a tree with p levels,

there are 2p� 1 processors.
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Load balance in ORB partition is controlled by positioning each bisecting plane so that equal amounts

of computational work lie on either side. Computational work is estimated on a per-particle basis, usually

by counting the number of interactions necessary to evaluate a particle�s velocity at the previous timestep.4

Schemes have been devised for incrementally updating these bisector positions to maintain load balance

[51]; other codes recompute the ORB partition at each timestep [9,3].
Following ORB partition, velocity evaluation in all these codes proceeds by parallelization over targets,

as described in the first half of Section 3.1. That is, each processor is responsible for evaluating the influence

of the whole domain on its own particles. Each processor constructs a local BH tree in its own domain. The

root nodes of these trees, corresponding to the leaf nodes of the ORB tree, are all shared among processors.

Then, each processor builds a unique locally essential tree, i.e., imports the cells of non-local BH trees re-

quired to evaluate the velocity on local particles. Rather than transmitting this data as needed during tree

traversals for velocity evaluation, these codes use simple multipole acceptability criteria (MAC) [7,40,9] to

construct locally essential trees a priori. This process is typically organized by sender-driven communica-
tion; the owner of an ORB domain determines which of its cells may be essential to other ORB leaf nodes

and sends appropriate multipole data. This is only possible for simple MACs, like the original cell-opening

criterion of Barnes and Hut or variations thereof [7]. More complex and accurate error bounds like those in

(16) and (13) preclude the a priori construction of locally essential trees, particularly for variable-order tree-

codes [10].

Consistent with our description in Section 3.1, the locally essential tree is effectively a ‘‘pruned’’ global

tree, incorporating the influence of the entire domain on the local particles. In [9] and [3], this tree is hybrid

in structure – a binary tree on top (due to ORB) partition, and an oct-tree below the ORB leaf nodes. Bhatt
et al. [51] go further by explicitly constructing a global oct-tree, resolving levels between the local oct-trees;

this process is rendered more difficult by adaptive features in the BH trees, like variable-size leaf nodes.

3.5.2. HOT

In contrast to these ORB-based codes, the hashed oct-tree (HOT) code of Warren and Salmon directly

performs domain decomposition on the bodies of a global, distributed oct-tree [61,49,10]. Particle coordi-

nates are mapped to 64-bit keys; the mapping is designed so that keys can identify not just particles (i.e.,

leaf nodes of the tree) but higher nodes of the tree. A hashing function maps keys to cell data, e.g., mul-
tipole moments and cell centers. In contrast to the pointer-based tree traversals employed above, hashing

is designed to allow easier access to non-local cell data.

Domain decomposition in the HOT code proceeds by sorting the body key ordinates. Sorting these keys

amounts to constructing a space-filling curve passing through all the particles with Morton ordering [62].

The curve is then partitioned into K segments, one for each processor, using estimates of per-particle cost to

ensure that segments represent equal work. Branch nodes – the smallest oct-tree cell containing all the par-

ticles on a particular processor�s segment of the curve – are then shared among processors to build the

upper levels of the global oct-tree. Because it is the oct-tree itself that is partitioned, this stage of the algo-
rithm avoids many of the complications of the ORB scheme [63].

Morton ordering preserves reasonable spatial locality, but is not ideal in this regard; the sorted list still

contains spatial discontinuities that may be spanned by a single processor domain. These discontinuities

can lead to inefficiencies in velocity evaluation [61], particularly in light of the discussion in Section 3.1.

The HOT scheme also requires that leaf nodes contain single particles, unlike adaptive treecodes that allow
4 Per-particle cost estimates are possible because velocity evaluation in these codes is parallelized over targets, as will be described

below; and typically, the order of multipole expansion is fixed, so per-particle costs will remain more consistent. The ‘‘granule’’ of

parallel partition (a target particle) can be directly associated with a cost, since velocity evaluation involves target particles interacting

with source clusters. New particle introduction, however, will disrupt these estimates; this issue has not been addressed in the cited

codes.
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variable leaf-node size [51]. Also, cells of the HOT are uniform rectangular prisms, and cannot shrink to fit

their data, an adaptive feature that was found to improve the efficiency of the present LK treecode [1].

As in the ORB codes, velocity evaluation proceeds by parallelizing over targets. To allow the use of data-

dependent error criteria like that in (16) the HOT code does not construct a locally essential tree a priori.

Instead, each processor requests cell data from other processors as needed while evaluating the velocity on
its own particles. A complicated system of communication lists is used to hide the latency of requesting far-

away data.

A simpler counterpart to the HOT code for shared-memory architectures is the costzones approach

developed by Singh et al. [60]. Costzones also partitions the tree directly, using estimates of per-particle cost

to achieve load balance. A local ordering for the children of every cell ensures that partitions of the tree are

also physically contiguous.

3.5.3. Graph partitioning

A different, more theoretical approach is taken by Teng [64]; his work analyzes the communication graphs

of hierarchical N-body algorithms, including the BH scheme, and proposes algorithms for their load-

balanced partition. The communication graph, defined on particles and oct-tree cells, represents the inter-

actions between these objects during the execution of the N-body algorithm; the edge weights reflect

communication requirements of each interaction. A good partitioning algorithm, in this analysis, yields

an edge-partition of the communication graph into two disjoint graphs of equal (vertex-weighted) compu-

tational cost, while keeping the ‘‘cost’’ – the total weight of all edges removed – small. While this and other

studies of graph partition algorithms [65,66], including recursive bisection [67], provide useful theoretical
results on the partition of oct-trees and other data structures, they do not address the problem of what

the tree objects themselves should look like. Teng�s algorithm only considers partitioning the cells of an

existing, generic oct-tree. Yet cell geometry can have a profound effect on computation and communication

costs, as discussed above and as will be demonstrated in the next section. Guided by these considerations,

k-means clustering yields an entirely new class of geometric objects, forming an adaptive spatial partition of

N-body interaction.

In summary, we note the following:

� More accurate, more complex error estimates preclude the a priori construction of locally essential trees,

as do certain adaptive features, like a run-time choice between direct interaction and multipole

expansion.

� Variable-order expansions and adaptive features of the tree (like cells that shrink to fit, or a run-time

choice between direct interaction and multipole expansion) make per-particle cost more difficult to

define, even when parallelizing over targets. Moreover, the present implementation parallelizes over

sources.

� ORB and sorted hash keys do not create optimal domain geometries. ORB domains can be long and
narrow (see Fig. 3 in [3], for instance); domains defined by Morton ordering may even span spatial dis-

continuities [61]. The HOT construction further limits tree adaptivity.

� None of the studies reviewed here show the performance of load balancing while new particles are con-

tinually being introduced, e.g., through filament remeshing; we will do so below.
4. Results

In the following, we examine the performance of cluster partition of N-body interactions by a variety of

measures – speed and parallel efficiency, error control, load balance, and particle–cluster interaction counts.
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In particular, we apply the k-means clustering and load balancing algorithms developed in Section 3 to the

parallel hierarchical evaluation of vortical velocities in a vortex simulation of a transverse jet at high Rey-

nolds number.

4.1. Transverse jet simulations

The dynamics and mixing properties of the transverse jet – a jet issuing normally into a uniform cross-

flow – are important to a variety of engineering applications. Transverse jets may function as sources of fuel

in industrial furnaces, or as diluent jets for blade cooling or exhaust gas cooling in industrial or airborne gas

turbines. The transverse jet is a canonical example of a flow dominated by large-scale ‘‘coherent structures.’’

Experimental observations by Fric and Roshko [68] identify four such structures in the transverse jet: jet

shear layer vortices; ‘‘wake vortices’’ arising from interaction between the jet and the channel wall bound-

ary layer; horseshoe vortices that wrap around the jet exit; and a counter-rotating vortex pair that forms as
the jet bends into the crossflow, persisting far downstream. The evolution of these structures is inherently

three-dimensional and characterized by topological changes in the vorticity field. Vortex methods are

attractive in this context for their explicit link to the formation and dynamics of vortical structures in

the flow.

Details of our vorticity formulation and a thorough analysis of the flow physics revealed by vortex sim-

ulation are presented elsewhere [11,69,12,70]. Here, we merely summarize aspects of the simulation that are

relevant to the parallel N-body problem. Vorticity entering the flow at each timestep is discretized with vor-

tex particles that lie on partial filaments [11]. Filaments result from our physically motivated expression of
vorticity flux boundary conditions, but also provide a convenient mechanism for local remeshing in re-

sponse to flow strain. Filament geometries are described by cubic splines supported by a finite set of nodes.

Nodes are advected by the local velocity field using a second-order predictor/corrector method with time-

step control. Advecting the nodes accounts for deformation of the material lines and thus for stretching and

tilting of the vorticity and the corresponding modification of element weights ai = x dVi, since vortex lines

and material lines coincide. When the length jdvij of a given element exceeds 0.9d, where d is the regular-

ization radius in (8), a new node is added at the midpoint of the element, thus splitting the element into two

connected elements and enforcing the core overlap condition along the filament [58].
In addition to local insertion of vortex elements/nodes, we implement hairpin removal algorithms to re-

move small-scale folds along vortex filaments [71]; this process regularizes the formation of small scales and

thus reduces the rate at which elements proliferate. We also merge neighboring elements along filaments

whenever the linear extent of an element becomes too small. The result of all these operations on filament

geometry is an incremental remeshing which modifies the vortex particle distribution – a distribution that is

also being modified by advection and by the evolution of particle weights ai(t). On balance, local element

insertion, hairpin removal, and small element merging result in a net positive introduction of elements.

Thus, not only do elements enter the flow at the jet nozzle, but they are created throughout the domain.
This is typical of three-dimensional vortex methods [14,72], and corresponds to the turbulent cascade to-

wards smaller length scales via stretching and folding of vortex lines.

4.2. Single-step performance and scaling

We first examine timings for a single evaluation of vortical velocities. A ‘‘single evaluation’’ involves cal-

culation of the full N-body problem, computing the velocity induced by every vortex element on every other

vortex element. Of course, a higher-order time integration scheme (e.g., a Runge–Kutta scheme) may re-
quire multiple such evaluations in a single timestep. The timing data reported below are obtained on the

IBM SP RS/6000 at the National Energy Research Scientific Computing Center (NERSC), which is com-

posed of 375 MHz POWER 3 processors arranged in 16-processor nodes.
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4.2.1. Test cases

Fig. 5 shows a representative particle distribution from transverse jet simulation, containing N = 157 297

particles. Each vortex particle is represented by a sphere with radius proportional to the norm of the par-

ticle�s vector weight iaii2. The crossflow is directed in the positive x direction; the jet centerline is aligned

with the y axis; and the z axis is in the spanwise direction. Flow variables are made dimensionless by d,
the nozzle diameter, and U1, the crossflow velocity. The jet orifice is thus a disc of diameter one centered

at the origin of the x–z plane; the remainder of the x–z plane is a solid wall through which we enforce a no-

flow boundary condition. The ratio of the jet velocity to the crossflow velocity, denoted by r, is 7.

A few comments on the particle distribution are in order. Vortex particles are introduced at the edge of

the jet nozzle every Dtnoz time units; the number of particles introduced at each such instant is nh. Here, we

take Dtnoz = 0.01, nh = 64, and the particle core radius d = 0.1. As particles enter the flow, they initially com-

pose a cylindrical shear layer which rolls up 1–2 diameters above the jet. Roll-up of the shear layer is man-

ifested by grouping of the particles into vortex rings; but as these rings form, they stretch and deform out-
of-plane in a process that is intimately linked to the formation of a counter-rotating vortex pair aligned

with the jet trajectory. Counter-rotating vorticity further disrupts the particle distribution as vortex fila-

ments wind and stretch and as opposite-signed vorticities approach each other. The jet then bends further

into the crossflow and the particle distribution – in terms of both locations and weights – becomes enor-

mously complicated as smaller scales are generated and the particles fill the space. Again, a complete anal-

ysis of these vortical transformations is given in [12].
Fig. 5. Vortex elements in the transverse jet at t = 2.0; N = 157 297. Particle sizes are proportional to i(x dV)ii2.
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We consider two different vortex element distributions, both drawn from simulations of an evolving

transverse jet – one with smaller N (N = 261 481) and one with larger N (N = 1 164 184). The larger case

is reached approximately 0.4 convective time units after the smaller one, and thus represents not only more

particles but a particle distribution that has evolved slightly further downstream and developed more small

scales.
For each of these two cases, we compare three partitioning schemes. The first, labeled ‘‘block distribu-

tion,’’ is simply a block partition of vortex element arrays. Within the arrays, elements are arranged in or-

der of (1) where they appear along a filament and (2) when the filament was introduced into the flow. Since

elements on successive filaments will share somewhat similar trajectories, this distribution preserves some

data locality, as shown in Fig. 6(a). Nonetheless, some interleaving is present. Performance of this ‘‘naive’’

partition is not expected to be good, but it is a convenient and straightforward partition to compute for

purposes of comparison. Each domain contains essentially the same number of particles, N/k.

The second partitioning scheme is k-means clustering as presented in Section 3.2, with no attempt at cor-
recting the load balance. Thus, all the scaling factors sk are set to 1.0, and the iterations for cluster centroids

are allowed to begin from a random initial seed of particle locations. The third partitioning scheme employs

k-means clustering but adds the load balance heuristics developed in Section 3.4. The precise procedure for

obtaining this partition is as follows: First, k-means clustering is performed with unity scalings and random

initial seed. Then, the velocity is evaluated and cluster timings tnk are obtained. The highest-cost cluster is

split and the scalings sk are updated with one application of (21), then the partition is re-computed. In other

words, the difference between the second and third partitioning schemes is one iteration of the load balance

heuristics.
Two exceptions to this procedure are the k = 1024 ‘‘scaled clusters’’ cases in Figs. 7–10, identified by the

filled-in square symbol in each figure. Timings for these cases were obtained from an actual, dynamic vortex

element simulation, and hence are the result of many load-balancing iterations applied to an evolving par-

ticle distribution. These cases serve to illustrate the realistic performance of load-balanced clustering in a

dynamic simulation.

4.2.2. Timing, speedup, and parallel efficiency

For each particle distribution, with each of the three partitioning schemes, we scale the number of pro-
cessors from 1 to 1024, choosing k 2 {1,16,64,128,512,1024}. Fig. 7(a) and (b) shows the total time of

velocity evaluation in each of these cases. We set the treecode accuracy parameter � = 10�2 and the leaf size

parameter N0 = 512. Velocity evaluation times reflect both the time necessary to evaluate the velocity at

each vortex particle in parallel and the overhead of interprocessor communication (i.e., for global reduction

operations after every processor has finished evaluating the velocity induced by sources in its domain). This

can be broken down, using the notation of the previous section, as T = maxktk + tcomm. From these figures,

it is clear that the block distribution results in slower velocity evaluations than either of the cluster distri-

butions. Load-balanced clustering results in faster evaluations than plain k-means clustering, particularly
for k > 128. Regardless of the partition scheme, adding more processors leads to faster evaluations (not

a surprising result).

It is instructive to cast the timing data in terms of speedup S, where
S ¼ T serial

T parallel

: ð22Þ
These data are shown in Fig. 8. Ideal speedup is equal to k. Clearly, the block distribution performs

poorly compared to the clustered distributions, yielding a speedup of less than 200 when using 1024 pro-

cessors. Scaled k-means outperforms plain k-means, especially for k > 128. An additional gain in speedup

is seen in the scaled k = 1024 cases, denoted with solid squares in Fig. 8(a) and (b); recall that these parti-

tions result from successive load-balance iterations, whereas scaled cases with k 6¼ 1024 are only one load



Fig. 6. Representative domains resulting from block and cluster partitioning of the vortex elements in Fig. 5; t = 2.0, N = 157 297,

k = 128.

512 Y.M. Marzouk, A.F. Ghoniem / Journal of Computational Physics 207 (2005) 493–528



0 200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

10
4

k [num procs]

ve
lo

ci
ty

 e
va

lu
at

io
n 

tim
e 

[s
]

block distribution
kmeans clusters
scaled kmeans clusters

(a) N = 261481.

0 200 400 600 800 1000 1200
10

1

10
2

10
3

10
4

10
5

k [num procs]

ve
lo

ci
ty

 e
va

lu
at

io
n 

tim
e 

[s
]

block distribution
kmeans clusters
scaled kmeans clusters

(b) N = 1164184.

Fig. 7. Velocity evaluation time for the parallel treecode versus number of processors, testing three different domain decomposition

schemes.
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balance iteration away from their unscaled counterparts. It is remarkable that the speedup of scaled k-means

clusters in the larger N case is quite close to the ideal speedup. This comparison is better distilled by plotting

parallel efficiency P, defined as follows
P ¼ T serial

k � T parallel

ð23Þ
and shown in Fig. 9. Parallel efficiency of block distribution falls off rapidly at relatively small k and ap-

proaches a value below 20% in both the large N and small N cases. With the cluster partitions, the parallel

efficiency observed in the large N case is significantly better than in the small N case. This may be due to the
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Fig. 8. Speedup for the parallel treecode versus number of processors, testing three different domain decomposition schemes.
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proportionally smaller communication cost of the former, or may point to some subtle interaction between
the granularity N/k and the maximum leaf node size N0. In any case, problem sizes of N > 106 are much

more representative and computationally demanding targets for parallel hierarchical methods, particularly

for large k � 103. In this case, we observe parallel efficiencies consistently above 85% for scaled k-means

clusters. The most realistically load-balanced case, k = 1024, shows a remarkable parallel efficiency of 98%.

4.2.3. Load imbalance

The load imbalances underlying the single-step timings just presented are shown in Fig. 10. We define

load imbalance I as follows:
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Fig. 9. Parallel efficiency versus number of processors, testing three different domain decomposition schemes.
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I ¼
max

k
tk

�t
: ð24Þ
Several features are worth noting. First, block distribution shows the best overall load balance, with an
imbalance below 1.3 in all cases of k and N. Although every domain in a given block distribution has essen-

tially the same number of particles, per-particle cost is not uniform, as discussed in Section 3.4, and thus

some imbalance will be present. Nonetheless, this imbalance is relatively small, and illustrates the fact that

good load balance is no guarantee of parallel efficiency. Domain geometry has a key role in determining

parallel efficiency; and thus all the cluster partitions, though they may exhibit larger load imbalances, show

vastly better parallel performance than the block partition.
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Fig. 10. Load imbalance for each test case in Figs. 7–9, testing three different domain decomposition schemes.
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Load imbalance with plain k-means clustering, shown by the dash-dotted line in Fig. 10(a) and (b),

tends to increase with the number of processors, although jaggedness in this curve reflects the fact that,

without any attempts at controlling the relative cluster populations, load balance in the clustered case

depends on the random initial seed. After all, it is the highest-cost cluster that determines the load imbal-
ance. One application of the load-balancing heuristics reduces the imbalances to those observed on the

solid line, for k 6¼ 1024. Successive load-balancing iterations, even though they are performed on a

dynamically evolving particle distribution, reduce the imbalance even further – to approximately 1.3 in

both k = 1024 cases. Again, we emphasize that this value is typical of the imbalance observed in full sim-

ulations. We will comment further on the performance of successive load-balance iterations in Section

4.6.
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Examination of Figs. 9(b) and 10(b) together motivates an additional observation. Consider the scaled

k-means partitions for large N: while these cases have load imbalances of 1.3–1.7, they have parallel effi-

ciencies above 85%. In particular, consider the k = 1024 case, with its load imbalance of 1.355 and parallel

efficiency of 98%. If the load balance were further improved, the parallel efficiency would clearly be higher

than 100%. Suppose, for instance, that the load imbalance in this case could somehow be reduced to 1.0,
and suppose further that perfecting the load balance would not shift the mean cluster time �t or change the
communication overhead Tcomm. Then, using a simple breakdown of computational costs,
P ¼ T serial

k � T parallel

� T serial

k T comm þ I � �tð Þ ; ð25Þ
we would find a parallel efficiency of 130%. Without communication overhead, we would observe a speedup
of 1536 – a ‘‘parallel efficiency’’ of 150%. While this situation seems entirely hypothetical, it illustrates that

our actual parallel partition performs better than the load balance would lead one to expect. Why is this the

case? There may be some gains in speed due to better use of cache in the parallel computation. But a factor

that cannot be overlooked is the difference in the geometry of the hierarchical partition between the serial

and parallel cases. The serial case has no k-means clusters; instead it has a single adaptive oct-tree covering

the entire domain. Clusters partition the domain differently, and it may be that the resulting hybrid parti-

tion – with k-means clusters serving as root cells of small oct-trees – is more efficient than even the original

oct-tree.

4.3. Particle–cluster interaction counts

While the timings reported in the preceding section are the ultimate practical measure of performance,
additional insight into the effect of geometry on computational cost may be gained by counting particle–

cluster interactions.

The possibility raised at the close of the previous section – that k-means clustering may provide a better

partition of the domain – has implications beyond parallel decomposition. It is difficult to explore this pos-

sibility with measures of computational time alone, however, as factors like communication overhead,

along with memory and cache access patterns, will color the timing data in a hardware-dependent fashion.

Fig. 11 shows the number of source particles evaluated at each order of expansion p or with direct sum-

mation, for a single computation of vortical velocities. We use the N = 1 164 124 particle distribution pre-
sented earlier and consider three different partitions: (1) block distribution with 1024 domains, (2) k-means

clustering with k = 1024 clusters, and (3) a single adaptive oct-tree. The last partition is simply the serial

(k = 1) case in Section 4.2, employing all the adaptive oct-tree features discussed in [1].

Particle–cluster interactions are counted as follows. Each time the velocity induced by a source cell of nc
particles is evaluated at some order p, nc is added to a counter corresponding to that p. Of course, every

target particle interacts with N source particles through expansions at different levels of the tree, and thus

the sum of the ordinates on each curve in Fig. 11 is equal to N2. The curves differ, however, in their dis-

tribution. The block partition yields a very large number of direct interactions, accounting for its poor par-
allel efficiency. The global oct-tree shows that the largest number of particles participate in order p = 7

interactions, and that very few cells are expanded at p 6 5. The k-means partition, by contrast, shows lower

orders of expansion. Some particles are expanded at order p = 4, and the distribution peaks at p = 6. Low-

er-order expansions are less expensive – both on a per-cell basis, because the number of terms at each order

is O(p3) – and on a per-particle basis, because the initial calculation of higher-order moments may be

avoided. K-means thus yields a partition on which hierarchical velocity evaluations may be performed more

efficiently, at lower computational expense.

Fig. 11 very clearly shows the impact of geometry on computational cost – in particular, how geometry
directly controls the number and order of particle–cluster interactions necessary to evaluate velocity within
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a given accuracy. This confirms the mechanisms discussed in Section 3.1 and carries implications for the
geometric constructions on which hierarchical methods are built, transcending issues of serial or parallel

implementation. Future work that extends these ideas will be discussed in Section 5.1.

4.4. Error control

While noting substantial gains in parallel performance, it is important to verify that the accuracy of

velocity evaluation is well-controlled with the present algorithm. We compute the exact velocity at each tar-

get particle udiri using direct summation and compare these values to those obtained with the parallel tree-
code, using both block and cluster partitions. This comparison is performed for two cases of N:

N = 261 481 (the small-N case used in the previous two sections) and N = 102 505. Because of the high cost

of direct summation, performing this comparison for much larger N would have been computationally pro-

hibitive. The treecode velocities were obtained for two different values of the accuracy parameter, � = 10�2,

10�4. Cluster partition is performed without splitting of high-cost clusters or scaling, as load balance is not

expected to have much effect on velocity error.

Fig. 12 shows the absolute error in velocity as a function of k, for k 2 {1,16,64,256}. This error is de-

fined as the maximum, over all the target particles, of the velocity error magnitude:
eabs ¼ max
i

ui � udiri

		 		
2
: ð26Þ
We find that this error is very well-controlled as the velocity evaluation is further parallelized – it remains

at or below the serial (k = 1) error for all k, with only one exception (k = 16 and N = 102 505). Block dis-

tribution seems to produce smaller errors than cluster distribution as k increases. With either partition, the

reduction in error with higher k is more pronounced for the � = 10�2 case than the � = 10�4 case. Similar

trends are observed with the relative magnitude of the velocity error, defined as
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Fig. 12. Velocity magnitude error versus number of processors, for � = 10�2, 10�4, testing block and cluster partitions.
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erel ¼ max
i

ui � udiri

		 		
2

udirik k2

 !
ð27Þ
and shown in Fig. 13. The fact that errors are smaller in the parallel cases than in the serial case suggests

that we are over-constraining the error. By distributing fractions of the global accuracy parameter � to all

clusters, as in Eq. (18), we are in a sense replacing one constraint with k independent constraints. As a re-

sult, the bound on the total error is too conservative. A more sophisticated distribution of the error param-
eter to clusters – one that keeps eabs or erel from declining with higher k – could conceivably further reduce

the time of parallel velocity evaluation, for additional gains in computational efficiency.
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4.5. K-means performance and scaling

The calculation of a k-means partition carries its own computational cost, and it is desirable, for an effec-
tive parallel domain decomposition, that this cost (1) remain small relative to the actual cost of evaluating

the N-body interaction and (2) scale well with problem size. Fig. 14 shows the time per iteration of the k-

means algorithm as a function of the number particles N for different values of k. In this context k is both

the number of clusters and the number of processors performing the clustering. As a result, the overall com-

putational complexity of a single k-means step, O(Nkd), is divided by k, and we should see O(N) scaling.

This is borne out in the figure, as the lines corresponding to different k lie on top of each other and are
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relatively indistinguishable. Thus, the parallel efficiency of our parallel k-means implementation is very near

100%. The absolute time per iteration is quite small compared to the velocity evaluation times in Fig. 7 for

similar N, and, for a given k, the O(N) scaling of k-means is asymptotically smaller than the O(N log N)

scaling expected of a BH-type treecode. Converging to a k-means partition may require several iterations;

in fact we set lmax = 7 when starting from a random seed of centroids and lmax = 4 otherwise. But the total

cost of these iterations is still small compared to the cost of velocity evaluation, especially when one con-

siders that higher-order time integration schemes like Runge–Kutta will perform several velocity evalua-

tions with a single k-means partition.
4.6. Dynamic load balance

The performance of the load-balancing algorithms developed in Section 3.4 is best demonstrated in a

dynamic N-body simulation; here, we use the transverse jet simulation, complete with evolving vortex par-

ticle locations and weights and new particle introduction throughout the domain.

First, we examine the distribution of processor times tk for a single velocity evaluation step. We choose

the N = 1 164 184 case used earlier, extracting this case from two simulations. One simulation employs the
load-balancing algorithms – i.e., iterated scaling and split/merge of cluster centroids – and the other does

not, instead reseeding the centroids at each step. The processor times tk do not include any communication

overhead; they consist of the time required by each processor to evaluate the influence of its source particles

on the whole domain. These times are normalized by �t and used to populate the histogram in Fig. 15.

Clearly, the distribution of processor times is much narrower in the load-balanced case. The maximum pro-

cessor time determines the load imbalance, which is approximately 1.4.

We can extend this analysis to successive velocity evaluations and thus find the averaged normalized load

distribution on an evolving field of particles. Fig. 16 shows normalized processor times for 36 successive
velocity evaluations, with N growing from 106 to 2.5 · 106. The load-balanced simulation again shows a
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significantly narrower load distribution than the simulation performed with plain k-means clustering. The

load distribution in the latter case has a long tail above the mean processor time; iterated scaling and split/

merge in Fig. 16(b) seem to control the extent of this tail quite effectively.

Fig. 17 shows the load imbalance at each step of the simulation. Since we are using a second-order
Runge–Kutta method for time integration, there are two values of the imbalance at every value of N, cor-

responding to two different velocity evaluations. The load imbalance with plain k-means ranges up to 2.5

and shows significant variation from step to step. In contrast, the load-balanced clustering maintains an
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imbalance well below 1.5 for much of the simulation, and has a better bounded step-to-step variation as

well. The contrast in values of the load imbalance is particularly appreciable at large values of N.
Of course, the ultimate measure of performance is velocity evaluation time, to which load balance is a

contributing factor. Fig. 18 plots the total velocity evaluation time – including communication overhead –

at every step of a simulation of the evolving transverse jet. The dashed line shows velocity evaluation times

using plain k-means clustering; as suggested by the plots of load balance, this line is quite jagged, and its

deviation from the load-balanced case becomes significant at large N. Introducing the load-balance heuris-

tics results in a smoother profile of evaluation time versus N; at larger values of N, the computational
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savings, relative to the unbalanced case, can be as much as 50 s per evaluation. The hypothetical ideal

performance is represented by the dash-dotted line, which shows the mean velocity evaluation time �t plus
communications overhead. This is the velocity evaluation time that could be achieved with perfect load
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balance. While there is some gap between this line and the actual load-balanced simulation at large N, the

present simulations perform remarkably well relative to this ideal.

Fig. 18 also shows a relatively favorable increase in velocity evaluation time versus N. The trend is best

observed with either the load-balanced evaluation time or the mean evaluation time. While we cannot make

strict conclusions about scaling, since the particle distribution is evolving as N increases, the mean velocity
evaluation time shows a growth that appears somewhere between O(N) and the O(N log N) that would be

expected for a Barnes–Hut-type treecode.
5. Conclusions

The high-resolution vortex particle simulations described in this paper present a number of computa-

tional challenges. Chief among these – in terms of computational cost – is the N-body problem of evalu-
ating vortical velocities at every particle. Direct summation is prohibitively expensive for large N and

thus we employ a hierarchical method, specifically an adaptive treecode based on Taylor expansions of

the Rosenhead–Moore kernel (8) in Cartesian coordinates [1]. This method must contend with an irregular,

time-evolving particle distribution of non-uniform density and with the continual introduction of new vor-

tex particles throughout the domain. Moreover, the size of our problem requires that we implement the

hierarchical method in parallel on a distributed-memory machine.

This paper introduces new algorithms, based on weighted k-means clustering, for partitioning and dy-

namic load balancing of N-body interactions. Good spatial partitioning is central to the performance of
a hierarchical method. We demonstrate that the number of particle–cluster interactions and the order at

which they are performed is directly affected by partition geometry, and that the relationship between par-

tition geometry and computational cost is expressed in the error bounds of various cluster approximations.

Weighted k-means creates well-localized convex domains and minimizes a sum of cluster moments, reduc-

ing the cost of computing the N-body problem.

We also introduce heuristics for dynamic load balancing that are compatible with k-means; these include

iterative scaling of cluster sizes and adaptive redistribution of cluster centroids.

Application of load-balanced k-means partition to the parallel hierarchical evaluation of vortical veloc-
ities results in outstanding parallel efficiencies; velocity evaluation errors, on the other hand, are maintained

at or below their serial values. On a realistic distribution of 1.2 million vortex particles, obtained from the

transverse jet, we observe a parallel efficiency of approximately 98% on 1024 processors; naive approaches

to domain decomposition show parallel efficiencies below 20% on the same problem. In simulations of the

evolving transverse jet, we find that load imbalance is typically maintained below 1.5. Additionally, we find

that (1) load balance provides no guarantee of parallel efficiency, and (2) with k-means partition, the par-

allel efficiency of the hierarchical method is better than the load imbalance would suggest.

The utility of these clustering algorithms extends beyond vortex particle methods to N-body problems in
a variety of fields.

5.1. Future work

The performance of parallel cluster partitioning and the accompanying dynamic load balancing tech-

niques, while very good, suggests a number of extensions and improvements.

First, one may explore alternative means of obtaining load-balanced cluster partitions. Load balancing

in this problem may be cast as a constrained optimization problem. Optimal geometry – i.e., minimization
of the cost function J in (15) with all the scalings sk set to unity – must be subject to a constraint ensuring

equal computational cost for each cluster. One way to approach this constraint is to add a penalty term of

the form cðNk � �NÞ2 or cðtk ��tÞ2 to the k-means cost function. How best to solve this optimization problem
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– in other words, how this new term would modify (or invalidate) the k-means algorithm – will require some

consideration.

Second, a logical step forward for our parallel treecode is to extend the implementation to distributed

data – that is, to no longer store copies of all the particle locations and weights on all processors. Doing

this will add additional communication steps to the current parallel framework, but eliminate any realistic
constraints that memory may place on problem size. We may be able to take advantage of the k-means

partition in designing the necessary algorithms. Mapping a point in space to the domain that contains it

in log k time could easily be accomplished with hierarchical clustering (see below); we also may be able

to use the Voronoi tesselation of cluster centroids to do the same.

Finally, while the primary objective of this paper has been to develop and demonstrate the advantages of

flat k-means clustering for parallel domain decomposition and dynamic load balancing, the performance of

these algorithms suggests a broader applicability to N-body problems. When k-means clusters are used for

domain decomposition, the parallel efficiency of the N-body calculation is better than the load imbalance
alone would suggest (i.e., P > 1/I) because k-means creates a different overall partition geometry. As shown

in Fig. 11, more source particles have their influence computed at lower order in the parallel case (a hybrid

k-means + local oct-tree partition) than in the serial case (an adaptive global oct-tree partition). This result

is not surprising, given the geometric optimality of k-means clusters. Results thus suggest that hierarchical

k-means clustering could replace traditional oct-tree partitioning schemes to optimize the computational

efficiency of serial N-body algorithms, extending geometric optimality to every level of the hierarchy.

The opportunities for adaptivity in this context are enormous. The number of child clusters within each

parent cell is not constrained in any way, and could be locally optimized at each node of the tree. In the
parallel context, hierarchical clustering may also offer a simpler means of load-balancing by localizing com-

petition among centroids for particles. The improved interaction counts in Fig. 11 may just scratch the sur-

face of potential gains.
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